Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Am J Trop Med Hyg ; 107(4_Suppl): 14-20, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228905

RESUMO

Malaria control programs in Africa encounter daunting challenges that hinder progressive steps toward elimination of the disease. These challenges include widespread insecticide resistance in mosquito vectors, increasing outdoor malaria transmission, lack of vector surveillance and control tools suitable for outdoor biting vectors, weakness in malaria surveillance, and an inadequate number of skilled healthcare personnel. Ecological and epidemiological changes induced by environmental modifications resulting from water resource development projects pose additional barriers to malaria control. Cognizant of these challenges, our International Center of Excellence for Malaria Research (ICEMR) works in close collaboration with relevant government ministries and agencies to align its research efforts with the objectives and strategies of the national malaria control and elimination programs for the benefit of local communities. Our overall goal is to assess the impact of water resource development projects, shifting agricultural practices, and vector interventions on Plasmodium falciparum and P. vivax malaria in Kenya and Ethiopia. From 2017 to date, the ICEMR has advanced knowledge of malaria epidemiology, transmission, immunology, and pathogenesis, and developed tools to enhance vector surveillance and control, improved clinical malaria surveillance and diagnostic methods, and strengthened the capacity of local healthcare providers. Research findings from the ICEMR will inform health policy and strategic planning by ministries of health in their quest to sustain malaria control and achieve elimination goals.


Assuntos
Malária Vivax , Malária , Animais , Etiópia/epidemiologia , Humanos , Quênia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores
2.
Am J Trop Med Hyg ; 107(4_Suppl): 5-13, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228918

RESUMO

Food insecurity, recurrent famine, and poverty threaten the health of millions of African residents. Construction of dams and rural irrigation schemes is key to solving these problems. The sub-Saharan Africa International Center of Excellence for Malaria Research addresses major knowledge gaps and challenges in Plasmodium falciparum and Plasmodium vivax malaria control and elimination in malaria-endemic areas of Kenya and Ethiopia where major investments in water resource development are taking place. This article highlights progress of the International Center of Excellence for Malaria Research in malaria vector ecology and behavior, epidemiology, and pathogenesis since its inception in 2017. Studies conducted in four field sites in Kenya and Ethiopia show that dams and irrigation increased the abundance, stability, and productivity of larval habitats, resulting in increased malaria transmission and a greater disease burden. These field studies, together with hydrological and malaria transmission modeling, enhance the ability to predict the impact of water resource development projects on vector larval ecology and malaria risks, thereby facilitating the development of optimal water and environmental management practices in the context of malaria control efforts. Intersectoral collaborations and community engagement are crucial to develop and implement cost-effective malaria control strategies that meet food security needs while controlling malaria burden in local communities.


Assuntos
Anopheles , Malária Falciparum , Malária Vivax , Malária , África Oriental/epidemiologia , Animais , Etiópia/epidemiologia , Humanos , Larva , Malária/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Vivax/epidemiologia , Malária Vivax/prevenção & controle , Mosquitos Vetores , Plasmodium falciparum , Plasmodium vivax , Água
3.
J Infect Dis ; 226(9): 1657-1666, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056912

RESUMO

BACKGROUND: Irrigated agriculture enhances food security, but it potentially promotes mosquito-borne disease transmission and affects vector intervention effectiveness. This study was conducted in the irrigated and nonirrigated areas of rural Homa Bay and Kisumu Counties, Kenya. METHODS: We performed cross-sectional and longitudinal surveys to determine Plasmodium infection prevalence, clinical malaria incidence, molecular force of infection (molFOI), and multiplicity of infection. We examined the impact of irrigation on the effectiveness of the new interventions. RESULTS: We found that irrigation was associated with >2-fold higher Plasmodium infection prevalence and 3-fold higher clinical malaria incidence compared to the nonirrigated area. Residents in the irrigated area experienced persistent, low-density parasite infections and higher molFOI. Addition of indoor residual spraying was effective in reducing malaria burden, but the reduction was more pronounced in the nonirrigated area than in the irrigated area. CONCLUSIONS: Our findings collectively suggest that irrigation may sustain and enhance Plasmodium transmission and affects intervention effectiveness.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Humanos , Controle de Mosquitos , Anopheles/parasitologia , Estudos Transversais , Mosquitos Vetores , Malária/epidemiologia
4.
Am J Trop Med Hyg ; 104(4): 1359-1370, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33556042

RESUMO

Malaria risk factor assessment is a critical step in determining cost-effective intervention strategies and operational plans in a regional setting. We develop a multi-indicator multistep approach to model the malaria risks at the population level in western Kenya. We used a combination of cross-sectional seasonal malaria infection prevalence, vector density, and cohort surveillance of malaria incidence at the village level to classify villages into malaria risk groups through unsupervised classification. Generalized boosted multinomial logistics regression analysis was performed to determine village-level risk factors using environmental, biological, socioeconomic, and climatic features. Thirty-six villages in western Kenya were first classified into two to five operational groups based on different combinations of malaria risk indicators. Risk assessment indicated that altitude accounted for 45-65% of all importance value relative to all other factors; all other variable importance values were < 6% in all models. After adjusting by altitude, villages were classified into three groups within distinct geographic areas regardless of the combination of risk indicators. Risk analysis based on altitude-adjusted classification indicated that factors related to larval habitat abundance accounted for 63% of all importance value, followed by geographic features related to the ponding effect (17%), vegetation cover or greenness (15%), and the number of bed nets combined with February temperature (5%). These results suggest that altitude is the intrinsic factor in determining malaria transmission risk in western Kenya. Malaria vector larval habitat management, such as habitat reduction and larviciding, may be an important supplement to the current first-line vector control tools in the study area.


Assuntos
Anopheles/parasitologia , Malária/epidemiologia , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia , Animais , Portador Sadio/epidemiologia , Portador Sadio/parasitologia , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Incidência , Quênia/epidemiologia , Larva , Fatores de Risco , Fatores Socioeconômicos
5.
Trials ; 21(1): 665, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690063

RESUMO

BACKGROUND: In the past two decades, the massive scale-up of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) has led to significant reductions in malaria mortality and morbidity. Nonetheless, the malaria burden remains high, and a dozen countries in Africa show a trend of increasing malaria incidence over the past several years. This underscores the need to improve the effectiveness of interventions by optimizing first-line intervention tools and integrating newly approved products into control programs. Because transmission settings and vector ecologies vary from place to place, malaria interventions should be adapted and readapted over time in response to evolving malaria risks. An adaptive approach based on local malaria epidemiology and vector ecology may lead to significant reductions in malaria incidence and transmission risk. METHODS/DESIGN: This study will use a longitudinal block-cluster sequential multiple assignment randomized trial (SMART) design with longitudinal outcome measures for a period of 3 years to develop an adaptive intervention for malaria control in western Kenya, the first adaptive trial for malaria control. The primary outcome is clinical malaria incidence rate. This will be a two-stage trial with 36 clusters for the initial trial. At the beginning of stage 1, all clusters will be randomized with equal probability to either LLIN, piperonyl butoxide-treated LLIN (PBO Nets), or LLIN + IRS by block randomization based on their respective malaria risks. Intervention effectiveness will be evaluated with 12 months of follow-up monitoring. At the end of the 12-month follow-up, clusters will be assessed for "response" versus "non-response" to PBO Nets or LLIN + IRS based on the change in clinical malaria incidence rate and a pre-defined threshold value of cost-effectiveness set by the Ministry of Health. At the beginning of stage 2, if an intervention was effective in stage 1, then the intervention will be continued. Non-responders to stage 1 PBO Net treatment will be randomized equally to either PBO Nets + LSM (larval source management) or an intervention determined by an enhanced reinforcement learning method. Similarly, non-responders to stage 1 LLIN + IRS treatment will be randomized equally to either LLIN + IRS + LSM or PBO Nets + IRS. There will be an 18-month evaluation follow-up period for stage 2 interventions. We will monitor indoor and outdoor vector abundance using light traps. Clinical malaria will be monitored through active case surveillance. Cost-effectiveness of the interventions will be assessed using Q-learning. DISCUSSION: This novel adaptive intervention strategy will optimize existing malaria vector control tools while allowing for the integration of new control products and approaches in the future to find the most cost-effective malaria control strategies in different settings. Given the urgent global need for optimization of malaria control tools, this study can have far-reaching implications for malaria control and elimination. TRIAL REGISTRATION: US National Institutes of Health, study ID NCT04182126 . Registered on 26 November 2019.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Anopheles , Humanos , Quênia , Malária/epidemiologia , Malária/transmissão , Controle de Mosquitos/instrumentação , Mosquitos Vetores , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Proc Natl Acad Sci U S A ; 110(51): 20675-80, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297936

RESUMO

The malaria parasite-resistance island (PRI) of the African mosquito vector, Anopheles gambiae, was mapped to five genomic regions containing 80 genes, using coexpression patterns of genomic blocks. High-throughput sequencing identified 347 nonsynonymous single-nucleotide polymorphisms within these genes in mosquitoes from malaria-endemic areas in Kenya. Direct association studies between nonsynonymous single-nucleotide polymorphisms and Plasmodium falciparum infection identified three naturally occurring genetic variations in each of three genes (An. gambiae adenosine deaminase, fibrinogen-related protein 30, and fibrinogen-related protein 1) that were associated significantly with parasite infection. A role for these genes in the resistance phenotype was confirmed by RNA interference knockdown assays. Silencing fibrinogen-related protein 30 increased parasite infection significantly, whereas ablation of fibrinogen-related protein 1 transcripts resulted in mosquitoes nearly free of parasites. The discovered genes and single-nucleotide polymorphisms are anticipated to be useful in the development of tools for malaria control in endemic areas in Africa.


Assuntos
Anopheles , Genoma/imunologia , Imunidade Inata/genética , Proteínas de Insetos , Plasmodium falciparum/imunologia , Polimorfismo de Nucleotídeo Único , Animais , Anopheles/genética , Anopheles/imunologia , Anopheles/parasitologia , Inativação Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Quênia
7.
Int. j. morphol ; 31(1): 329-337, mar. 2013. ilus
Artigo em Inglês | LILACS | ID: lil-676176

RESUMO

The mosquito midgut is the organ into which the blood meal passes and in which, within a peritrophic membrane secreted by the epithelium, the blood is retained during digestion and absorption. The mosquito midgut is lined with an actin filled microvilli that are exposed to the harsh environment of the gut lumen such as food particle abrasion, digestive hydrolases and attack by pathogens and parasites that are taken in by the blood meal. These microvilli are protected them these effects by the peritrophic matrix, the glycocalyx and the mucin proteins that line their epithelial surfaces. Immunization of BALB/c mice with AgMUC1/IL-12 cDNA has been shown to kill mosquitoes when fed on these mice. Mucin is one of the proteins produced in the mosquito midgut after a blood meal. The fine structure of the mosquito midgut epithelium interacting with immune factors such as antibodies or immune cells is of special significance for interpreting early events in the interaction between the mosquito midgut lining and the specific immune components present in the blood of AgMUC1/IL-12 cDNA immunized BALB/c mice. Following bright light microscopy, scanning electron and transmission electron microscopic observations of the features seen in mosquito midgut sections from An. gambiae mosquitoes fed on BALB/c mice immunized with AgMUC1/IL-12 cDNA, the most likely immune mechanisms responsible for mosquito killing could be cell mediated, most likely antibody dependent cellular cytotoxicity. Both necrotic and apoptotic processes that could be the cause of mosquito death were seen to take place in the cells lining the midgut epithelium.


El intestino medio es el órgano al cual pasa la sangre consumida por el mosquito y donde, mediante una membrana peritrófica secretada por el epitelio, esta sangre es mantenida durante la digestión y absorción. El intestino del mosquito está revestido por microvellosidades llenas de actina que son expuestas a las complejas condiciones en torno a la luz intestinal, tales como la abrasión producida por partículas de alimentos, hidrolasas digestivas y el ataque de patógenos y parásitos que son tomados en la sangre consumida. Estas microvellosidades se protegen de estos efectos mediante la matriz peritrófica, el glicocálix y las proteínas de mucina que revisten las superficies epiteliales. La inmunización con AgMUC1/IL-12 ADNc en ratones BALB/c ha demostrado ser útil para matar los mosquitos cuando se alimentan de estos ratones. La mucina es una de las proteínas producidas en el intestino medio del mosquito después de consumir sangre. La fina estructura del epitelio del intestino interactúa con factores inmunes tales como anticuerpos o células inmunes es de especial importancia para interpretar los eventos tempranos en la interacción entre el revestimiento del intestino medio y los componentes inmunológicos específicos presentes en la sangre de ratones BALB/c inmunizados con AgMUC1/IL-12 cDNA. Después de observar mediante microscopías de luz, electrónica de barrido y de transmisión las características de secciones del intestino medio del mosquito Anopheles gambiae alimentado de ratones BALB/c inmunizados con AgMUC1/IL-12 cDNA, mecanismos inmunes mediados por citotoxicidad celular dependiente de anticuerpos (ADCC) podrían ser los responsables de matar a los mosquitos. Los procesos necróticos y apoptóticos que pueden ser la causa de la muerte del mosquito tienen lugar en las células que recubren el epitelio del intestino medio.


Assuntos
Animais , Camundongos , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/patologia , Epitélio/imunologia , Epitélio/patologia , Culicidae , Interleucina-12 , Mucina-1 , Digestão , Anopheles , Camundongos Endogâmicos BALB C , Microscopia/métodos
8.
Malar J ; 10: 121, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21569546

RESUMO

BACKGROUND: The ecology of malaria vectors particularly in semi-arid areas of Africa is poorly understood. Accurate knowledge on this subject will boost current efforts to reduce the burden of malaria in sub-Saharan Africa. The objective of this study was to describe the dynamics of malaria transmission in two model semi-arid sites (Kamarimar and Tirion) in Baringo in Kenya. METHODS: Adult mosquitoes were collected indoors by pyrethrum spray collections (PSC) and outdoors by Centers for Disease Control (CDC) light traps and identified to species by morphological characteristics. Sibling species of Anopheles gambiae complex were further characterized by rDNA. PCR and enzyme-linked immuno-sorbent assays (ELISA) were used to test for Plasmodium falciparum circumsporozoite proteins and host blood meal sources respectively. RESULTS: Anopheles arabiensis was not only the most dominant mosquito species in both study sites but also the only sibling species of An. gambiae s.l. present in the area. Other species identified in the study area were Anopheles funestus, Anopheles pharoensis and Anopheles coustani. For Kamarimar but not Tirion, the human blood index (HBI) for light trap samples was significantly higher than for PSC samples (Kamarimar, 0.63 and 0.11, Tirion, 0.48 and 0.43). The HBI for light trap samples was significantly higher in Kamarimar than in Tirion while that of PSC samples was significantly higher in Tirion than in Kamarimar. Entomological inoculation rates (EIR) were only detected for one month in Kamarimar and 3 months in Tirion. The number of houses in a homestead, number of people sleeping in the house, quality of the house, presence or absence of domestic animals, and distance to the animal shelter and the nearest larval habitat were significant predictors of An. arabiensis occurrence. CONCLUSION: Malaria transmission in the study area is seasonal with An. arabiensis as the dominant vector. The fact this species feeds readily on humans and domestic animals suggest that zooprophylaxis may be a plausible malaria control strategy in semi-arid areas of Africa. The results also suggest that certain household characteristics may increase the risk of malaria transmission.


Assuntos
Anopheles/crescimento & desenvolvimento , Anopheles/parasitologia , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Plasmodium falciparum/isolamento & purificação , Animais , Antígenos de Protozoários/análise , Clima , DNA de Protozoário/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Quênia/epidemiologia , Malária Falciparum/prevenção & controle , Reação em Cadeia da Polimerase , Estações do Ano
9.
Parasit Vectors ; 4: 25, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21352608

RESUMO

BACKGROUND: Pre-adult stages of malaria vectors in semi-arid areas are confronted with highly variable and challenging climatic conditions. The objective of this study was to determine which larval habitat types are most productive in terms of larval densities in the dry and wet seasons within semi-arid environments, and how vector species productivity is partitioned over time. METHODS: Larval habitats were mapped and larvae sampled longitudinally using standard dipping techniques. Larvae were identified to species level morphologically using taxonomic keys and to sub-species by polymerase chain reaction (PCR) methods. Physical characteristics of larval habitats, including water depth, turbidity, and presence of floating and emergent vegetation were recorded. Water depth was measured using a metal ruler. Turbidity, pH, conductivity, dissolved oxygen, temperatures salinity and total dissolved solids (TDS) were measured in the field using the hand-held water chemistry meters. RESULTS: Mean larval densities were higher in the dry season than during the wet season but the differences in density were not statistically significant (F = 0.04, df = 1, p = 0.8501). Significantly higher densities of larvae were collected in habitats that were shaded and holding turbid, temporary and still water. Presence of emergent or floating vegetation, habitat depth, habitat size and habitat distance to the nearest house did not significantly affect larval density in both villages. There was a weakly positive relationship between larval density and salinity (r = 0.19, p < 0.05), conductivity (r = 0.05, p = 0.45) and total dissolved solids (r = 0.17, p < 0.05). However, the relationship between water temperature and larval density was weakly negative (r = 0.15, p = 0.35). All statistical tests were significant at alpha = 0.05. CONCLUSION: Breeding of malaria vector mosquitoes in Baringo is driven by predominantly human-made and permanent breeding sites in which Anopheles arabiensis and Anopheles funestus breed at a low level throughout the year. Permanent water sources available during the dry season serve as inocula by providing "larval seed" to freshly formed rain-fed habitats during the rainy season. The highly localized and focal nature of breeding sites in these semi-desert environments provides a good opportunity for targeted larval control since the habitats are few, well-defined and easily traceable.


Assuntos
Anopheles/crescimento & desenvolvimento , Vetores de Doenças , Ecossistema , Animais , Anopheles/anatomia & histologia , Anopheles/classificação , Anopheles/genética , Clima , Quênia , Larva/anatomia & histologia , Larva/classificação , Larva/genética , Larva/crescimento & desenvolvimento , Microscopia , Reação em Cadeia da Polimerase , Estações do Ano
10.
Parasitol Res ; 108(6): 1355-63, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20730445

RESUMO

Larval control is a major component in mosquito control programs. This study evaluated the wide-scale application of Bti/Bs biolarvicide (Bacillus thuringiensis var. israelensis [Bti] and Bacillus sphaericus [Bs]) in different aquatic habitats in urban and peri-urban Malindi, Kenya. This study was done from June 2006 to December 2007. The urban and peri-urban area of Malindi town was mapped and categorized in grid cells of 1 km(2). A total of 16 1-km(2) cells were selected based on presence Community Based Organization dealing with malaria control within the cells. Each of the 16 1-km(2) cells was thoroughly searched for the presence of potential larval habitats. All habitats, whether positive or negative for larvae, were treated and rechecked 24 h (1 day), 6 days, and 10 days later for the efficacy of Bti/Bs. Weekly larval sampling was done to determine the mosquito larval dynamics in the aquatic habitats during the study period. Morphological identification of the mosquito larvae showed that Anopheles gambiae s.l. Giles was the most predominant species of the Anopheles and while in the culicines, Cx. quinquefasciatus Say was the predominant species. Anopheles larvae were all eliminated in habitats within a day post-application. For culicine larvae, 38.1% (n=8) of the habitat types responded within day 1 post-treatment and all the larvae were killed, they turned negative during the days of follow-up. Another 38.1% (n=8) of the habitat types had culicine larvae but turned negative by day 6, while three habitats (14.3%) had larvae by 6th day but turned negative by 10th day. However during this Bti/Bs application studies, two habitat types, house drainage and cesspits (9.5%), remained positive during the follow-up although the mosquito larvae were significantly reduced. Both early and late instars of Anopheles larvae immediately responded to Bti/Bs application and reached 100% mortality. The early and late instars of culicine responded to the Bti/Bs application but not as fast as the Anopheles larval instars. The early instars Culex, responded with 90.8% mortality at day 1 post-treatment, and the mortality was 99.9% at day 10. Similarly, the late instars Culex followed the same trend and exhibited same mortalities. The weekly sampling in the aquatic habitats showed that there was a 36.3% mosquito larval reduction in the aquatic habitats over the 18-months study period. In conclusion, Bti/Bs biolarvicide are useful in reducing the mosquito larval densities in a wide range of habitats which have a direct impact of adult mosquito populations.


Assuntos
Anopheles/efeitos dos fármacos , Bacillus thuringiensis/química , Bacillus/química , Toxinas Bacterianas/farmacologia , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Animais , Água Doce , Insetos Vetores , Quênia , Larva/efeitos dos fármacos , Controle Biológico de Vetores/métodos
11.
Ecotoxicol Environ Saf ; 73(1): 46-50, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19735939

RESUMO

Anopheles mosquitoes have been shown to adapt to heavy metals in their natural habitats. In this study we explored the possibility of using Anopheles gambiae sensu stricto as bio-reporters for environmental heavy metal pollution through expressions of their metal-responsive metallothionein and alpha-tubulin genes. The study was undertaken with third instar larvae after selection by cadmium, copper, or lead at LC(30) through five successive generations. Expression levels were determined in the 5th generation by semi-quantitative RT-PCR on the experimental and control populations. The data were analyzed using one-way ANOVA. The highest metallothionein (F(3,11)=4.574, P=0.038) and alpha-tubulin (F(3,11)=12.961, P=0.002) responses were observed in cadmium-tolerant treatments. There was significantly higher expression of metallothionein in cadmium or copper treatments relative to the control (P=0.012), and in cadmium than in lead treatments (P=0.044). Expressions of alpha-tubulin were significantly higher in cadmium than in control treatments (P=0.008). These results demonstrate the capacity of An. gambiae s.s. to develop tolerance to increased levels of heavy metal challenge. The results also confirm the potential of heavy metal-responsive genes in mosquitoes as possible bio-indicators of heavy metal environmental pollution. How the tolerance and expressions relate to An. gambiae s.s. fitness and vectorial capacity in the environment remains to be elucidated.


Assuntos
Anopheles/metabolismo , Metalotioneína/genética , Metais Pesados/toxicidade , Tubulina (Proteína)/genética , Animais , Anopheles/efeitos dos fármacos , Cádmio/toxicidade , Cobre/toxicidade , Tolerância a Medicamentos , Chumbo/toxicidade , Dose Letal Mediana , RNA Mensageiro/análise
12.
Malar J ; 8: 216, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19772590

RESUMO

BACKGROUND: Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. METHODS: Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4 was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. RESULTS: By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. CONCLUSION: An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity.


Assuntos
Anopheles/crescimento & desenvolvimento , Ecossistema , Animais , Humanos , Quênia , Modelos Estatísticos , Oryza , Viés de Seleção
13.
Parasitol Res ; 104(4): 851-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19034518

RESUMO

An ecological study was conducted at three study sites in Mwea Rice Scheme, Kenya to identify the diverse aquatic habitats in which culicine mosquitoes thrived and to explore the best strategies for mosquito control in the area. During the 11-month study period, ten habitat categories and 11 culicine species mainly dominated by Culex quinquefasciatus (72.0%) and Culex annulioris (17.9%) were identified from pupae and late instars larval samples. Two of the 11 culicine species, Ficalbia (Mimomyia) plumosa and Uranotaenia spp., have not been reported previously in the study area. Rurumi had more habitat types than either of the other study sites but the least number of mosquito species. In contrast, Karima had the least number of habitat types but significantly higher density of early instars than the other study sites. The relative abundance of late instars and pupae did not vary significantly among study sites. The contribution of different habitat types to larval production varied markedly between seasons and among study sites. Paddies and canals were perennial contributors of culicine mosquito larvae while the other habitat types were important mainly during the wet season. Some habitat types such as ditches, seeps, marshes, and fishpond were absent in some study sites but of great significance in other study sites. C. quinquefasciatus was positively associated with turbidity at all study sites and also negatively associated with emergent vegetation and distance to the nearest homestead in Karima, emergent vegetation in Kiuria, and other aquatic invertebrates in Rurumi. C. annulioris was positively associated with emergent vegetation at all study sites and also with depth in Kiuria. These findings indicate that besides rice fields and associated habitats, a diversity of other aquatic habitats contribute to culicine adult mosquito production in the study area and that environmental factors that determine the occurrence of a particular mosquito species may vary significantly even among areas of similar land use. This information is critical when designing and implementing mosquito larval control programs.


Assuntos
Culicidae/crescimento & desenvolvimento , Ecossistema , Oryza/crescimento & desenvolvimento , Animais , Culex/classificação , Culex/crescimento & desenvolvimento , Culicidae/classificação , Água Doce , Insetos Vetores/crescimento & desenvolvimento , Quênia , Larva/crescimento & desenvolvimento , Controle de Mosquitos , Densidade Demográfica , Dinâmica Populacional
14.
Acta Trop ; 109(1): 17-26, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18930703

RESUMO

This research illustrates a geostatistical approach for modeling the spatial distribution patterns of Anopheles arabiensis Patton (Patton) aquatic habitats in two riceland environments. QuickBird 0.61 m data, encompassing the visible bands and the near-infra-red (NIR) band, were selected to synthesize images of An. arabiensis aquatic habitats. These bands and field sampled data were used to determine ecological parameters associated with riceland larval habitat development. SAS was used to calculate univariate statistics, correlations and Poisson regression models. Global autocorrelation statistics were generated in ArcGISfrom georeferenced Anopheles aquatic habitats in the study sites. The geographic distribution of Anopheles gambiae s.l. aquatic habitats in the study sites exhibited weak positive autocorrelation; similar numbers of log-larval count habitats tend to clustered in space. Individual rice land habitat data were further evaluated in terms of their covariations with spatial autocorrelation, by regressing them on candidate spatial filter eigenvectors. Each eigenvector generated from a geographically weighted matrix, for both study sites, revealed a distinctive spatial pattern. The spatial autocorrelation components suggest the presence of roughly 14-30% redundant information in the aquatic habitat larval count samples. Synthetic map pattern variables furnish a method of capturing spatial dependency effects in the mean response term in regression analyses of rice land An. arabiensis aquatic habitat data.


Assuntos
Anopheles/crescimento & desenvolvimento , Ecossistema , Modelos Estatísticos , Oryza/crescimento & desenvolvimento , Agricultura/métodos , Animais , Quênia
15.
Malar J ; 7 Suppl 1: S4, 2008 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19091038

RESUMO

Integrated vector management (IVM) is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1) evidence-based decision-making, 2) integrated approaches 3), collaboration within the health sector and with other sectors, 4) advocacy, social mobilization, and legislation, and 5) capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN) and/or indoor residual spraying (IRS) coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with existing biomedical strategies within national malaria control programmes. This review provides an overview of how IVM programmes are being implemented, and provides recommendations for further development of IVM to meet the goals of national malaria control programmes in Africa.


Assuntos
Implementação de Plano de Saúde , Insetos Vetores , Malária/prevenção & controle , Controle de Mosquitos/métodos , África/epidemiologia , Animais , Participação da Comunidade , Tomada de Decisões , Setor de Assistência à Saúde , Humanos , Malária/epidemiologia , Malária/transmissão , Controle de Mosquitos/organização & administração , Organização Mundial da Saúde
16.
J Am Mosq Control Assoc ; 24(3): 349-58, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18939686

RESUMO

Knowledge of mosquito species diversity, occurrence, and distribution is an essential component of vector ecology and a guiding principle to formulation and implementation of integrated vector management programs. A 12-month entomological survey was conducted to determine the diversity of riceland mosquitoes and factors affecting their occurrence and distribution at 3 sites targeted for malaria vector control in Mwea, Kenya. Adult mosquitoes were sampled indoors by pyrethrum spray catch and outdoors by the Centers for Disease Control and Prevention light traps. Mosquitoes were then morphologically identified to species using taxonomic keys. The characteristics of houses sampled for indoor resting mosquitoes, including number of people sleeping in each house the night preceding collection, presence of bed nets, location of the house, size of eaves, wall type, presence of cattle and distance of the house to the cowshed, and proximity to larval habitats, were recorded. Of the 191,378 mosquitoes collected, 95% were identified morphologically to species and comprised 25 species from 5 genera. Common species included Anopheles arabiensis (53.5%), Culex quinquefasciatus (35.5%), An. pharoensis (4.7%), An. coustani (2.5%), and An. funestus (1.6%). Shannon's species diversity and evenness indices did not differ significantly among the 3 study sites. There was a marked house-to-house variation in the average number of mosquitoes captured. The number of people sleeping in the house the night preceding collection, size of eaves, distance to the cowshed, and the nearest larval habitat were significant predictors of occurrence of either or both An. arabiensis and Cx. quinquefasciatus. The peak abundance of An. arabiensis coincided with land preparation and the first few weeks after transplanting of rice seedlings, and that of Cx. quinquefasciatus coincided with land preparation, late stage of rice development, and short rains. After transplanting of rice seedlings, the populations of Cx. quinquefasciatus were collected more outdoors than indoors, suggesting a shift from endophily to exophily. These results demonstrate that irrigated rice cultivation has a strong impact on mosquito species occurrence, distribution, abundance, and behavior, and that certain house characteristics increase the degree of human-vector contact.


Assuntos
Biodiversidade , Culicidae , Insetos Vetores , Agricultura , Animais , Habitação , Quênia , Oryza , Densidade Demográfica , Chuva , Fatores de Tempo
17.
J Am Mosq Control Assoc ; 24(1): 36-41, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18437812

RESUMO

Distribution of mosquito larvae in inundated rice fields is poorly known despite its profound implications in implementation of vector control programs. Based on oviposition behavior of gravid females and biotic and abiotic conditions of the rice field, distribution of mosquito larvae within the paddy may vary greatly. As a guide to implementation of mosquito vector control program targeting the aquatic stages in the rice fields in Mwea, studies were conducted to determine the distribution of mosquito larvae within the paddy. Twenty-eight cages measuring 50 cm3 were distributed randomly within the paddy during the transplanting stage of the rice growth cycle, and were examined twice per week up to the flowering stage to determine mosquito oviposition pattern. A total of 17,218 mosquito larvae were collected at the periphery and a further 17,570 at the center of the paddy. These comprised 7,461 larvae from the genus Anopheles and 27,327 from genus Culex. The number of pupae collected at the periphery was 1,004 and 1.5 times greater than the number collected at the center. Significantly higher counts of Anopheles larvae were collected at the center (1.00 +/- 0.11) than at the periphery (0.55 +/- 0.05) of the paddy during transplanting stage, but the difference was not significant during the tillering stage. In contrast, significantly higher numbers of Culex larvae were collected from the periphery (3.09 +/- 0.39) than at the center (2.81 +/- 0.24) of the paddy. More pupae were also collected at the center than at the periphery of the paddy. These findings indicate the distribution of Anopheles and Culex larvae in rice fields to be nonrandom; however, for successful achievement of an integrated vector control program targeting the diverse mosquito fauna occurring in rice fields, there is need to target the whole paddy for larvicidal application.


Assuntos
Agricultura , Culicidae/fisiologia , Inseticidas/farmacologia , Controle de Mosquitos , Oryza , Animais , Ecossistema , Quênia , Larva/fisiologia , Água
18.
J Med Entomol ; 45(2): 242-50, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18402140

RESUMO

Pyrethroid-treated bed-nets and indoor spray are important components of malaria control strategies in Kenya. Information on resistance to pyrethroid insecticides in Anopheles gambiae and An. arabiensis populations is essential to the selection of appropriate insecticides and the management of insecticide resistance. Monooxygenase activity and knockdown resistance (kdr) allele frequency are biochemical and molecular indicators of mosquito resistance to pyrethroids. This study determined baseline information on monooxygenase activity and kdr allele frequency in anopheline mosquitoes in the western region, the Great Rift Valley-central region, and the coastal region of Kenya. In total, 1,990 field-collected individuals, representing 12 An. gambiae and 22 An. arabiensis populations were analyzed. We found significant among-population variation in monooxygenase activity in An. gambiae and An. arabiensis and substantial variability among individuals within populations. Nine of 12 An. gambiae populations exhibited significantly higher average monooxygenase activity than the susceptible Kisumu reference strain. The kdr alleles (L1014S) were detected in three An. gambiae populations, and one An. arabiensis population in western Kenya, but not in the Rift Valley-central region and the coastal Kenya region. All genotypes with the kdr alleles were heterozygous, and the conservative estimation of kdr allele frequency was below 1% in these four populations. Information on monooxygenase activity and kdr allele frequency reported in this study provided baseline data for monitoring insecticide resistance changes in Kenya during the era when large-scale insecticide-treated bed-net and indoor residual spray campaigns were being implemented.


Assuntos
Anopheles/genética , Inseticidas , Oxigenases de Função Mista/metabolismo , Piretrinas , Animais , Anopheles/enzimologia , Frequência do Gene , Resistência a Inseticidas/genética , Quênia
19.
Malar J ; 7: 43, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18312667

RESUMO

BACKGROUND: Studies were conducted between April 2004 and February 2006 to determine the blood-feeding pattern of Anopheles mosquitoes in Mwea Kenya. METHODS: Samples were collected indoors by pyrethrum spay catch and outdoors by Centers for Disease Control light traps and processed for blood meal analysis by an Enzyme-linked Immunosorbent Assay. RESULTS: A total of 3,333 blood-fed Anopheles mosquitoes representing four Anopheles species were collected and 2,796 of the samples were assayed, with Anopheles arabiensis comprising 76.2% (n = 2,542) followed in decreasing order by Anopheles coustani 8.9% (n = 297), Anopheles pharoensis 8.2% (n = 272) and Anopheles funestus 6.7% (n = 222). All mosquito species had a high preference for bovine (range 56.3-71.4%) over human (range 1.1-23.9%) or goat (0.1-2.2%) blood meals. Some individuals from all the four species were found to contain mixed blood meals. The bovine blood index (BBI) for An. arabiensis was significantly higher for populations collected indoors (71.8%), than populations collected outdoors (41.3%), but the human blood index (HBI) did not differ significantly between the two populations. In contrast, BBI for indoor collected An. funestus (51.4%) was significantly lower than for outdoor collected populations (78.0%) and the HBI was significantly higher indoors (28.7%) than outdoors (2.4%). Anthropophily of An. funestus was lowest within the rice scheme, moderate in unplanned rice agro-ecosystem, and highest within the non-irrigated agro-ecosystem. Anthropophily of An. arabiensis was significantly higher in the non-irrigated agro-ecosystem than in the other agro-ecosystems. CONCLUSION: These findings suggest that rice cultivation has an effect on host choice by Anopheles mosquitoes. The study further indicate that zooprophylaxis may be a potential strategy for malaria control, but there is need to assess how domestic animals may influence arboviruses epidemiology before adapting the strategy.


Assuntos
Agricultura/métodos , Anopheles/fisiologia , Sangue , Insetos Vetores/fisiologia , Malária/transmissão , Oryza , Animais , Anopheles/química , Mordeduras e Picadas , Bovinos , Ecossistema , Comportamento Alimentar/fisiologia , Feminino , Cabras , Humanos , Insetos Vetores/química , Quênia , Masculino , Controle de Mosquitos , Especificidade da Espécie
20.
Int J Health Geogr ; 7: 11, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18341699

RESUMO

BACKGROUND: The aim of this study was to determine if remotely sensed data and Digital Elevation Model (DEM) can test relationships between Culex quinquefasciatus and Anopheles gambiae s.l. larval habitats and environmental parameters within Internally Displaced People (IDP) campgrounds in Gulu, Uganda. A total of 65 georeferenced aquatic habitats in various IDP camps were studied to compare the larval abundance of Cx. quinquefasciatus and An. gambiae s.l. The aquatic habitat dataset were overlaid onto Land Use Land Cover (LULC) maps retrieved from Landsat imagery with 150 m x 150 m grid cells stratified by levels of drainage. The LULC change was estimated over a period of 14 years. Poisson regression analyses and Moran's I statistics were used to model relationships between larval abundance and environmental predictors. Individual larval habitat data were further evaluated in terms of their covariations with spatial autocorrelation by regressing them on candidate spatial filter eigenvectors. Multispectral QuickBird imagery classification and DEM-based GIS methods were generated to evaluate stream flow direction and accumulation for identification of immature Cx. quinquefasciatus and An. gambiae s.l. and abundance. RESULTS: The main LULC change in urban Gulu IDP camps was non-urban to urban, which included about 71.5 % of the land cover. The regression models indicate that counts of An. gambiae s.l. larvae were associated with shade while Cx. quinquefasciatus were associated with floating vegetation. Moran's I and the General G statistics for mosquito density by species and instars, identified significant clusters of high densities of Anopheles; larvae, however, Culex are not consistently clustered. A stepwise negative binomial regression decomposed the immature An. gambiae s.l. data into empirical orthogonal bases. The data suggest the presence of roughly 11% to 28 % redundant information in the larval count samples. The DEM suggest a positive correlation for Culex (0.24) while for Anopheles there was a negative correlation (-0.23) for a local model distance to stream. CONCLUSION: These data demonstrate that optical remote sensing; geostatistics and DEMs can be used to identify parameters associated with Culex and Anopheles aquatic habitats.


Assuntos
Infecções por Arbovirus/transmissão , Culicidae , Vetores de Doenças , Infecções por Protozoários/transmissão , Refugiados , Áreas Alagadas , Animais , Anopheles , Culex , Desastres , Ecossistema , Geografia , Humanos , Modelos Teóricos , Características de Residência , Fatores de Risco , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...